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Abstract: Polycystic ovary syndrome (PCOS) is a multisystem disorder that presents with a variety 
of phenotypes involving metabolic, endocrine, reproductive, and psychological symptoms and 
signs. Women with PCOS are at increased risk of pregnancy complications including implantation 
failure, miscarriage, gestational diabetes, fetal growth restriction, preterm labour, and preeclampsia 
(PE). This may be attributed to the presence of specific susceptibility features associated with PCOS 
before and during pregnancy, such as chronic systemic inflammation, insulin resistance (IR), and 
hyperandrogenism, all of which have been associated with an increased risk of pregnancy 
complications. Many of the features of PCOS are reversible following lifestyle interventions such as 
diet and exercise, and pregnant women following a healthy lifestyle have been found to have a 
lower risk of complications, including PE. This review summarizes the evidence investigating the 
risk of PE and the role of nutritional factors in women with PCOS. The findings suggest that the 
beneficial aspects of lifestyle management of PCOS, as recommended in the evidenced-based 
international guidelines, extend to improved pregnancy outcomes. Identifying high-risk women 
with PCOS will allow targeted interventions, early pregnancy screening, and increased surveillance 
for PE. Women with PCOS should be included in risk assessment algorithms for PE. 

Keywords: PCOS; pre-eclampsia; pregnancy; lifestyle; nutrition; placenta; pathophysiology; 
angiogenic ratio; screening  

 

1. Introduction 

Polycystic ovary syndrome is a systemic metabolic and endocrine disorder that results from a 
disturbance of adaptive interdependent homeostatic survival networks (metabolic, immune, and 
neuroendocrine) [1–4]. The pathophysiology is characterized by chronic systemic inflammation, IR, 
and hyperandrogenism [3–9]. This results in a range of phenotypic presentations, that when studied 
together, have been shown to confer an increased risk of pregnancy complications, including PE [10–
12]. When considered separately, different PCOS phenotypes present with clinical and biochemical 
features that range from mild to severe [2,13]. Nevertheless, women with PCOS inherit individual 
susceptibility features, independent of other co-existing morbidities such as obesity, that increase 
their risk of pregnancy complications and justify their inclusion in PE risk assessment algorithms 
[10,13,14]. 

Recent evolutionary models characterize PCOS as an evolutionary mismatch disorder that arises 
from an interaction between genetic and environmental factors [1,2]. Rapid cultural changes in the 
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contemporary environment have outpaced genetic adaptation and resulted in a mismatch between 
modern dietary and environmental exposures and behaviours, and selective metabolic and 
reproductive traits [1]. The influence of these modern exposures on developmentally programmed 
susceptibility genes, programs the embryo and fetus to express the phenotypic features of PCOS 
during childhood, adolescence, and adulthood [15–19]. As a result, adaptive physiological survival 
pathways that result in activation of inflammation, variation in insulin sensitivity, preferential 
abdominal fat accumulation, and downregulation of reproduction, become pathological following 
exposure to lifestyle and environmental factors [1,2]. The development of chronic systemic 
inflammation, IR, and hyperandrogenism, predispose women with PCOS to a range of chronic 
diseases and pregnancy complications [20–24]. 

Polycystic ovary syndrome affects 10-13% of reproductive age women and can present with a 
wide range of symptoms including menstrual irregularity, hirsutism, acne, alopecia, anxiety, 
depression, and subfertility, resulting in reduced quality of life [25]. PCOS can be a progressive 
metabolic condition that leads to obesity, hypertension, dyslipidemia, type 2 diabetes, metabolic 
syndrome, metabolic-associated hepatic steatosis, chronic kidney disease, cardiovascular disease, 
and cancer [1,22,26]. The population attributable risk of PCOS to type 2 diabetes is 19-28%, and the 
combined impact of PCOS makes a significant contribution to the chronic disease epidemic [22]. 
Multiple systematic reviews of large population-based studies over the past 40 years have reported 
a significantly increased risk of pregnancy complications, including PE, in women with PCOS 
[10,11,27–30]. 

Hypertensive disorders of pregnancy (HDP) (defined as chronic hypertension, gestational 
hypertension, preeclampsia-eclampsia and chronic hypertension with superimposed preeclampsia) 
are a leading cause of maternal-fetal morbidity and mortality worldwide [31,32]. Preeclampsia affects 
3-5% of pregnancies and is responsible for 76,000 maternal and 500,000 fetal/neonatal deaths every 
year [31,33]. The definition of PE has evolved over time, in line with research developments into the 
underlying pathophysiology [34]. This has resulted in an increased awareness of factors involved in 
the prevention, prediction, diagnosis, treatment, and long-term consequences of PE. It has been 
estimated that over 300 million women are at risk of chronic health problems (neurodevelopmental, 
metabolic, cardiac) due to previous PE [35–37]. 

The International Society for the Study of Hypertension in Pregnancy (ISSHP) has defined PE as 
new-onset gestational hypertension at or after 20 weeks gestation accompanied by proteinuria, 
maternal organ involvement, or uteroplacental dysfunction [32]. The pathophysiology of PE is 
characterized by placental malperfusion that results in syncytiotrophoblast stress and release of 
soluble factors (pro-inflammatory cytokines, exosomes, extracellular vesicles, transcription factors, 
hormones, and anti-angiogenic factors), that cause maternal vascular endothelial injury resulting in 
hypertension and multi-organ involvement [38–40]. More recently, circulating angiogenic factors 
such as soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PlGF), have been 
identified as markers of placental health and added to the diagnostic criteria in some countries [34]. 
In addition, advances in genetics, epigenetics, transcriptomics, metabolomics, artificial intelligence, 
organoid cultures of the endometrium and trophoblast, and stem cell research, have progressed our 
understanding of normal and pathological placentation [38,39]. 

It has long been appreciated that normal placental development requires a complex network of 
bidirectional communication signals (cytokines, metabolites, hormones, exosomes) between embryo-
derived cells (trophoblast, macrophages) and maternal-derived cells (endometrial gland epithelium, 
stromal, macrophages, natural killer, dendritic, and T cells) [38,39]. Decades of epidemiological 
research has identified over 70 maternal risk factors that are associated with the development of PE 
[12,39]. This has resulted in a greater awareness of the possible role of pre-existing maternal 
pathophysiological features on the development of abnormal placentation and related complications, 
such as PE [38]. 

Although there may be differences in the pathogenesis of early (<34 weeks gestation) and late-
onset PE, the pathophysiology and maternal/fetal consequences can be similar [38]. Pre-existing 
maternal pathological features such as chronic systemic inflammation [41], insulin resistance [42], 
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and hyperandrogenemia [43], as occur in women with PCOS [3], may alter normal placental 
development, metabolism, and physiology, at all stages of pregnancy [44,45]. In addition, many of 
the metabolic, endocrine, reproductive, and neuroimmune disturbances that occur in women with 
PCOS, have been shown to be reversed following lifestyle interventions such as diet and exercise 
[1,25,46]. 

Comprehensive international guidelines recommend lifestyle interventions as the first line of 
management for all women with PCOS [25]. Healthy maternal dietary patterns have been associated 
with a lower risk of developing PE (odds ratio (OR): 0.78, 95% confidence interval (CI) 0.7-0.86) and 
increased consumption of ultra-processed foods confer a higher risk (OR: 1.28, CI 1.15-1.42) [47]. 
Evidenced-based reviews and prospective cohort studies have demonstrated the effectiveness of 
lifestyle interventions for reducing the risk of PE in women with PCOS [47,48]. In addition, over 75 
randomized controlled trials have demonstrated the value of aspirin in the prevention of PE [49]. 

The following sections of this review will outline the evidence for the increased risk of PE in 
women with PCOS. The evidence supporting lifestyle and medical interventions will also be 
discussed and recommendations made for screening and medical therapy in pregnancy. 

2. Evidence for Increased Risk of PE in Women with PCOS 

Many observational studies, systematic reviews, and meta-analyses have reported an increased 
risk of pregnancy complications in women with PCOS over the past 40 years. These include 
miscarriage, gestational diabetes mellitus (GDM), intrauterine growth restriction, preterm birth, low 
birth weight, gestational hypertension, and PE [10,27–30]. In total, 8 systematic reviews published 
between 2006 and 2023, reported an increased relative risk of PE in women with PCOS of between 
1.87 and 4.23 (Table 1) [10,27–30,50–52]. The most recent 2023 meta-analysis included 36 studies that 
compared rates of PE in women with and without PCOS [52]. Pooled meta-analysis of 34 studies in 
women not taking metformin, showed a significantly increased risk of PE in women with PCOS (OR: 
2.35, 95% CI 1.93-2.86). Subgroup analysis of high-quality studies, after removal of low and medium 
quality studies, showed a significantly higher risk of PE in women with PCOS (OR: 3.05, 95% CI 1.20-
7.8). Subgroup analysis in 7 body mass index (BMI) matched studies, showed that women with PCOS 
retained an increased risk of developing PE (OR: 2.39, 95% CI 1.14-4.99) [52]. These findings are in 
agreement with 2 previous meta-analyses that showed a higher prevalence of PE in BMI-matched 
women with and without PCOS [50,51]. Overall, these data suggest that women with PCOS have an 
increased risk of PE that is independent of BMI. 

Table 1. Systematic reviews of studies investigating the risk of pre-eclampsia in women with PCOS. 

Author (Year) Odds Ratio (95% CI) 1 Studies Reference 

Boomsma et al (2006) 3.47 (1.95-6.17) 8 (27) 
Kjerulff et al (2011) 4.23 (2.77-6.46) 12 (28) 

Qin et al (2013) 3.28 (2.06-5.22) 15 (29) 
Yu et al (2016) 2.79 (2.29-3.38) 25 (30) 

Khomami (2019) 1.87 (1.55-2.25) 26 (10) 
Pan (2021) 

Riestenberg (2022) 
Mousa (2023) 

2.07 (1.91-2.24) 
2.03 (1.43-2.87) 
2.28 (1.88-2.77) 

20 
15 
36 

(50) 
(51) 
(52) 

1 CI = confidence interval. 

In addition, a large study from the United States National Inpatient Database of 71,436,308 
weighted hospitalizations for deliveries, analyzed 195,675 women with PCOS for their risk of 
pregnancy complications [11]. Women with PCOS had a higher risk of PE, eclampsia, peripartum 
cardiomyopathy, and heart failure, during delivery hospitalizations. The risk of developing PE was 
significantly increased in women with PCOS after adjustment for age, race, demographic variables, 
and comorbidities, including BMI (OR: 1.56, 95% CI 1.54-1.59). In addition, delivery hospitalizations 
were associated with increased length and cost of hospitalization in women with PCOS [11]. Despite 
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this large body of evidence, PCOS is not generally recognized as a risk factor for pregnancy 
complications and PE and is not included in national or international risk assessment models. 

There is international consensus that women should be assessed for risk factors associated with 
PE in early pregnancy [12,32,53]. There is ongoing debate regarding which risk factors to include and 
the type of measures that should be part of risk assessment strategies [53]. Clinical practice guidelines 
(CPG) recommend a combination of predictive assessments that include clinical risk factors, 
biophysical markers such as mean arterial blood pressure and mean uterine artery pulsatility index 
(UtAPI), and biochemical markers such as pregnancy-associated plasma protein A (PAPP-A) and/or 
PlGF [54,55]. Various combinations of these measures are advised by different national bodies and 
professional societies [31,53,56]. Recent reviews and commentaries have highlighted the fact that PE 
risk factors in current CPG are poorly aligned with the evidence [12,57]. A recent review by an expert 
working group identified PCOS as a probable risk factor for the development of PE, having a similar 
relative risk and level of evidence to many other risks that are currently included in risk assessment 
models [12]. None of the current CPG include PCOS as a risk factor. More recent studies add further 
weight to this evidence and support the need for a review of strategies advocated by CPG [11]. 

The international evidenced-based guidelines for the assessment and management of PCOS 
recommend screening, monitoring, and management of risk profiles in women with PCOS, 
preconception, during pregnancy, and postpartum, in accordance with the recommendations for the 
general population [25,58]. These recommendations include assessment of blood glucose, body 
weight, blood pressure, smoking, alcohol consumption, diet, exercise, sleep, and emotional health. 
There are no specific recommendations for the identification, screening, and management of women 
with PCOS in pregnancy. 

3. Evidence for the Role of Nutritional Factors in the Pathophysiology of PE 

Maternal nutrition has been suspected to play a role in the pathogenesis of PE for over 100 years 
[59–61]. The “dietary” hypothesis was proposed by advocates in the United Kingdom (Theobald) and 
United States (Dieckmann) in the early 1900’s [60]. A 1926 review summarized the literature up to 
this time on the possible pathological effects of dietary macronutrients and their metabolites (protein 
and urea, fat and ketosis, carbohydrate restriction and ketosis) in patients with PE [61]. Although 
dietary management was common (milk, bread, rice, eggs, and fruit, with salt restriction) it was noted 
that there were “no series of experiments in which the effect of various diets in PE has been 
deliberately tested” [61]. Nevertheless, it was noted that the incidence of eclampsia fell significantly 
during the first and second world wars and increased in the post-war years in Germany and the 
Netherlands, respectively, and this was attributed to dietary restriction during the war years [60]. In 
addition, there were numerous publications between 1922 and 1957 that reported differences in the 
rates of PE and eclampsia in indigenous versus European and urban populations (Algeria 1922, India 
1938, Ceylon 1946, South Africa 1947, New Guinea 1949, Fiji 1950, Indonesia 1952, Belgian Congo 
1956) [59,60]. Indigenous diets were noted to consist of “wholefoods” containing starchy root 
vegetables, leafy greens, home-pounded grains, fruit, and small quantities of milk, fish, and meat, if 
they were available. This was contrasted with European and urban diets that were high in refined 
grains (white rice and flour), sugar, and salt, and low in meat, milk, vegetables, and fruit [60]. 

According to the Global Burden of Disease Study, poor quality diet is one of the leading risk 
factors for morbidity and mortality globally [62]. International guidelines for the assessment and 
management of PCOS have recommended that lifestyle interventions, such as diet and exercise, 
should be discussed with all women diagnosed with PCOS [63]. More recent observational and 
intervention studies provide contemporary evidence to support the role of nutritional factors in PE 
[64]. Evidence-based summaries from systematic reviews, meta-analyses, and representative PE 
expert groups (PRECISE), recommend healthy maternal dietary patterns to reduce the risk of PE 
[47,64–66]. 

A recent comprehensive evidenced-based expert review of nutritional factors that may protect 
or exacerbate the risk of PE by the PRECISE Conceptual Framework Working Group, highlighted the 
importance of focusing on research related to healthy diet patterns rather than single nutrients [47]. 
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Nevertheless, they identified 25 nutritional factors in two umbrella reviews and twenty-two meta-
analyses. Of these, 14 were found to be significantly associated with an increased incidence of PE. 
Healthy maternal diets containing fruits, vegetables, whole-grain foods, fish, and chicken, such as 
Mediterranean and New Nordic diets, were associated with 22% reduced odds of developing PE (OR: 
0.78, 95% CI 0.70-0.86) [66]. In contrast, maternal diets high in ultra-processed foods and added sugars 
increased the odds of developing PE by 28% (OR: 1.28, 95% CI 1.15-1.42) [67]. Long-term longitudinal 
studies have shown that higher ultra-processed food intake in women is associated with increased 
cardiovascular risk and hypertension [68], as can occur in women with a history of PE [69]. These 
data support the recommendations of other expert reviews and the World Health Organization, on 
promoting healthy maternal diets [47,70,71]. 

Prospective cohort studies and observational research suggest that following a healthy lifestyle 
and diet prior to pregnancy is associated with reduced risk of PE. The multicenter prospective SCOPE 
study enrolled 5628 apparently healthy nulliparous women with singleton pregnancies, to examine 
the association of PCOS (354 women) with pregnancy complications, including PE [48]. The 
investigators reported that in this low-risk population the proportion of women with PE was similar 
in women with PCOS to those without PCOS (5.9% vs 6.7%; OR: 0.88, 95% CI 0.56-1.4). Pregnant 
women with PCOS were following a healthier lifestyle, including increased fruit and vegetable 
intake, more frequent vigorous exercise, lower alcohol consumption, and lower rates of smoking [48]. 
Analysis of data from the complete SCOPE cohort of 5628 women showed that lower intake of fruit 
and higher intake of fast food in the preconception period were associated with longer time to 
pregnancy [72]. A recent large meta-analysis of 21 cohort studies, showed that following a healthy 
lifestyle (diet and high physical activity) can also reduce the risk of developing GDM [73]. The authors 
highlighted the need for more randomized intervention trials. Taken together, these data suggest that 
nutritional factors may have an impact on fertilization, implantation, and placentation. 

Intervention trials currently underway should help clarify the impact of lifestyle modification 
prior to pregnancy on in-utero metabolic factors and neonatal outcomes [74]. Recent developments 
in endometrial organoid research should provide insights into the molecular mechanisms involved 
in mediating the effects of metabolic and immune disturbances in women with PCOS with adverse 
pregnancy outcomes [75]. A recent endometrial organoid study compared cell-type-specific disease 
signatures and molecular pathways for PCOS-specific endometrial dysfunction in women with and 
without PCOS [76]. The investigators examined 248,694 nuclei from 6 endometrial cell subtypes. They 
reported a range of differentially expressed genes in cells and pathways related to processes involved 
in placentation. Women with PCOS were treated with either metformin or lifestyle management for 
16 weeks, followed by repeat endometrial biopsy and establishment of a second endometrial 
organoid. Both treatments, either metformin or lifestyle intervention alone, restored multiple 
differentially expressed genes in each cellular subtype. This study provides new mechanistic insight 
into PCOS-specific endometrial dysfunction and the potential for reversibility with medical or 
lifestyle interventions. 

Diet is a modifiable risk factor, and a balanced healthy diet has been shown to reduce the risk of 
PE [48]. Pregnant women should eat a diet rich in fruit, vegetables, and whole-grains, and healthy 
sources of fat and protein [65,71]. Women with PCOS should receive lifestyle-oriented counselling 
and advice, before, during, and after pregnancy, and be considered for inclusion in risk assessment 
algorithms for the prediction and assessment of PE as previously discussed. 

4. Mechanisms of Action of Nutritional Factors in the Pathophysiology of PE 

Advances in the understanding of normal placental development have paved the way for 
improved understanding of the pathogenesis and pathophysiology of abnormal placentation in PE 
[38]. The syndrome of PE may have multiple underlying causes that differ in early or late-onset 
presentations, all of which could be influenced by maternal nutritional disturbances [45,77]. Normal 
development of the placenta involves a complex network of communication signals between fetal-
derived trophoblast and a broad range of maternal-derived endometrial cells [39]. The fetal-derived 
precursor cells of the placenta are affected by sperm-derived signals to endometrial cells prior to 
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fertilization [78,79], paternal and maternal genetics [80], imprinted genes [81], epigenetic 
reprogramming following fertilization [82], nutritional components of oviduct fluid from cells lining 
the Fallopian tube prior to implantation [38,83], histotrophic nutrition during the first trimester [84], 
and haemotrophic nutrition following the establishment of significant blood flow into the placental 
intervillous space [85]. Disturbances of normal physiology in any of these components could lead to 
abnormal trophoblast-decidual dialogue and contribute to deficient trophoblast invasion into the 
uterus and impaired spiral artery remodeling, resulting in placental hypoperfusion and 
syncytiotrophoblast stress, as is known to occur in PE (Figure 1) [77]. 

It has been proposed that placental development, is independent of, and precedes, 
embryogenesis, because of a two-way feed-forward dialogue between trophoblast cells and 
endometrial glands [38]. Hormones from trophoblast (human chorionic gonadotrophin, human 
placental lactogen) and decidual cells (prolactin) stimulate glandular epithelial cells to upregulate 
production of nutrients (glucose, lipid droplets, glycoproteins) and growth factors (epidermal growth 
factor), that in turn feedback on trophoblast cells and promote further proliferation and growth of 
the placenta [38]. This new understanding has focused attention on the role of pre- and post-
conception maternal pathophysiology, such as occurs in women with PCOS [3], altered nutrient 
supply, impaired bidirectional signalling, defective decidualization, and abnormal placentation in PE 
(Figure 1) [45,86–89].  

Epigenetic processes also play an important role in the development and progression of PE [90] 
and a wide range of epigenetic changes involving methylation, histone deacetylation, and microRNA, 
have been identified in the placentas of women with PE [90,91]. Epigenetic processes are the 
mechanism by which environmental influences alter gene expression without changing the structure 
of DNA. In PE, reduced placental blood flow causes hypoxia and results in epigenetic changes that 
activate adaptive responses in the placenta and maternal circulation [92,93]. Nutrition, diet, and 
metabolism regulate epigenetic mechanisms and integrate environmental cues and exposures with 
cellular responses [94]. Cellular metabolites (acetyl coenzyme A, adenosine triphosphate, 
nicotinamide adenine dinucleotide) act as nutrient sensors and contribute to the regulation of gene 
expression via epigenetic mechanisms [95]. Reciprocal crosstalk between epigenetics and metabolism 
determines molecular programing and cellular function [94]. Maternal obesity can lead to placental 
dysfunction via chronic inflammation, dysregulation of metabolic pathways, and epigenetic changes 
in gene expression [96,97]. Unbalanced diets can alter normal metabolic and epigenetic processes and 
lead to disturbed cellular function and disease [98]. Recent research in nutritional epigenomics 
explains how lifestyle interventions (diet and exercise) can restore metabolic and epigenetic 
homeostasis [99,100]. The interaction between cellular metabolism and the epigenome is a 
fundamental process in placental development and PE that is influenced by maternal nutritional and 
environmental exposures [45,90,101–108]. 

The accumulating molecular, endocrine, metabolic, and epigenetic evidence provides detailed 
mechanistic explanations for the role of nutritional factors in the pathophysiology of PE that support 
the evidenced-based research and recommendations previously discussed. The following sections 
provide a brief discussion of the pathophysiological components of PCOS that may be involved in 
the pathogenesis of altered placental development and function in PE. 
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Figure 1. Factors influencing bidirectional feto-maternal placentation. A schematic model showing 
the potential impact of nutritional and environmental factors at all stages of pregnancy, including 
gametogenesis, decidualization, implantation, and placental and fetal development. The blue arrow 
represents the paternal, maternal, and fetal components. Nutritional and environmental factors 
influence sperm maturation and development in males [109]. Once sperm enter the reproductive tract, 
they release signalling molecules that interact with decidual cells prior to fertilization [78]. Human 
oocytes develop in the mother during embryonic development and are subject to nutritional and 
environmental factors that influence epigenetic developmental programming [110]. Maternal and 
paternal nutritional and environmental factors can therefore influence sperm and oocytes prior to 
fertilization and have the potential to alter bidirectional communication signals during placentation. 
The red arrow represents the effect of nutritional and environmental factors in maternal 
pathophysiology and their impact on decidualization, placentation, and embryogenesis. Following 
fertilization, the zygote and morula receive nutrition from maternal secretions in the Fallopian tube 
[38]. During implantation and throughout the first trimester, both the placenta and embryo obtain 
nutrition from histotroph fluid that is derived from maternal endometrial gland secretions [38]. These 
secretions provide glucose, lipids, glycoproteins, and growth factors that stimulate rapid proliferation 
of villous trophoblast, extravillous trophoblast invasion, spiral artery remodeling, and normal 
development of the placenta [85,111]. At the start of the second trimester blood enters the intervillous 
space resulting in haemotrophic nutritional exchange between the maternal and fetal circulations 
[112]. Accumulating evidence suggests that pathophysiological changes in women with PCOS, such 
as insulin resistance, chronic inflammation, and hyperandrogenism, may influence the composition 
and quality of histotrophic and haemotrophic nutrition, alter bidirectional communication between 
decidual and placental cells, and effect normal placentation and fetal development. Central diagram 
in blue is adapted with permission from Kingdom and Drewlo 2011 [113]. 

4.1. Insulin Resistance 

Insulin is a pleotropic hormone that has multiple cellular and tissue-specific actions such as 
regulation of glucose uptake in some cells (muscle, adipose, vascular endothelium) [114], increased 
production of endothelial nitric oxide resulting in vasodilation in systemic and cardiac blood vessels 
[115], reduced excretion of urate [116], enhanced sodium absorption in the kidney [117], and multiple 
metabolic effects [118]. Many of these physiological processes are known to be involved in the 
pathophysiology of both PCOS and PE [3,39]. 

Insulin resistance can be defined as an altered cellular response to insulin stimulation that occurs 
in selective cells and tissues throughout the body [118]. The development of physiological IR is a 
normal adaptation to pregnancy to ensure adequate placental growth and nutrient supply to the fetus 
[119]. All women develop progressive IR and hyperinsulinemia throughout pregnancy in response 
to various hormones (human placental growth hormone, human chorionic gonadotrophin, human 
placental lactogen) [120,121] and adipokines (adiponectin) produced by the placenta and maternal 
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adipose tissue [122]. Pancreatic insulin secretion can increase by up to 250% during pregnancy to 
maintain euglycaemia [123]. Gestational diabetes is diagnosed if hyperglycaemia develops, as 
defined by national and international reference ranges, and is known to be associated with increased 
maternal and fetal complications [124,125]. Hyperinsulinaemia and/or hyperglycaemia related to 
GDM or PCOS may therefore be involved in pathological placental and fetal responses. Nutritional 
management is the cornerstone of treatment for both GDM and PCOS [25,126]. 

Most women diagnosed with PCOS prior to pregnancy have reduced insulin sensitivity, 
hyperinsulinaemia, and normoglycaemia [3,127]. Glucose metabolism has been shown to be 
important for preparation of the endometrium for embryo implantation. Pre-existing IR and 
hyperinsulinaemia have been associated with dysregulated decidualization and are thought to 
increase the risk of PE [128]. The expression of placental insulin receptors increases with gestational 
age, along with changes in the tissue distribution [129]. Although insulin sensitive glucose 
transporters are expressed in the placenta, the majority are not responsive to insulin stimulation [45]. 
Glucose transporters on the microvillous membrane of the syncytiotrophoblast move glucose into 
the cytoplasm by facilitated diffusion down the concentration gradient [85]. As a result, placental 
glucose transport to the fetus is mostly insulin independent. This may explain why maternal 
hyperglycaemia results in fetal hyperglycaemia and hyperinsulinaemia, which can be associated with 
adverse fetal (macrosomia) and placental effects [126]. Nevertheless, IR can interrupt glucose 
homeostasis and cause dysfunctional lipid metabolism and excessive inflammation, both of which 
are associated with PE [45]. 

Insulin resistance in early pregnancy has been shown to be predictive for the development of PE 
[130]. Pre-existing IR, coupled with the effects of chronic inflammation and hyperandrogenemia, is 
likely to have additive pathological effects on placental development and may be involved in the 
pathogenesis of PE [86,119]. Insulin has been shown to inhibit the activity of aromatase in human 
trophoblasts [131], which may provide a mechanism for connecting hyperinsulinaemia with placental 
androgen excess in women with PCOS. Elevated insulin levels were found to cause increased DNA 
damage, apoptosis, and decreased cell survival in cultured first trimester trophoblasts from healthy 
pregnancies [42]. Transcriptome signatures in placental trophoblasts exposed to insulin showed that 
the many biological processes (hormonal, cytokine, cell cycle, metabolic) were either up- or 
downregulated by insulin [132]. Trophoblast cells from the placenta of obese women were 30-times 
less sensitive to insulin than cells from normal-weight women. The investigators proposed that the 
enhancement of placental-specific genes supports the concept that insulin promotes both endocrine 
and growth functions in the placenta, and that IR and obesity can affect the structure and function of 
the placenta in early pregnancy [132]. Obese women have greater placental lipid accumulation 
(lipotoxicity and “fatty placenta”) than normal weight women [133]. Excess placental lipid may be 
due to changes in fatty acid uptake, decreased fatty acid oxidation, or increased esterification, and 
may contribute to increased lipid supply to the fetus and fetal adiposity [134]. These data support 
previous reports that show placental size and volume are strongly related to maternal insulin 
secretion in early pregnancy [135]. Nevertheless, obesity is often associated with hyperinsulinaemia, 
hyperglycaemia, and hypertriglyceridemia, which makes it difficult to separate the effects that may 
be driven by obesity from those caused by GDM or PCOS in women who have some or all these 
problems [134]. 

Maternal metabolism and cardiovascular physiology are altered in pregnancy in response to the 
increasing demands of placental and fetal growth [136]. Maternal vascular endothelial dysfunction is 
a classic feature of PE that is thought to be secondary to reduced placental blood flow and release of 
pro-inflammatory cytokines, reactive oxygen species, extracellular vesicles, and imbalance of 
angiogenic and anti-angiogenic factors [39,137]. Experimental studies have shown that women with 
PCOS have endothelial dysfunction (impaired endothelium-dependent vasodilation) and reduced 
response to the vasodilation effect of insulin [138–141]. The observed endothelial dysfunction may be 
related to both elevated androgen levels and IR [138,140]. In addition, PCOS is often associated with 
chronic hypertriglyceridemia [142], which is a known risk factor for endothelial dysfunction and may 
cause arteriolar vasoconstriction by altering the regulation of prostaglandins [143]. A systematic 
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review and meta-analysis showed that women that develop PE had elevated serum lipids and 
triglycerides during all trimesters of pregnancy [88]. Both maternal and placental factors may 
therefore converge on the maternal endothelium to produce the observed pathological manifestations 
of PE [86]. Women with PCOS may be at increased risk of PE due to the combined effects of 
inflammation, hyperandrogenemia, hypertriglyceridemia, and IR, on vascular endothelial function. 

In summary, accumulating evidence suggests that IR can affect normal placental development 
and may contribute to the pathophysiology of PE via a variety of mechanisms. Future research 
involving molecular techniques, computational advances, multiomics data, and endometrial 
organoids, should help our understanding of the effect of maternal IR on placental nutrient and 
energy utilization, growth pathways, and placental physiology. The investigation of maternal 
nutritional insults on placental development and function may open the way for interventions that 
mitigate the impact on adverse pregnancy-related outcomes, such as those that occur in PE. 

4.2. Chronic Systemic Inflammation 

Pregnancy is characterized by a state of chronic low-grade inflammation due to systemic release 
of a variety of placental cytokines that are required for normal placental development and function 
[132,144]. PCOS is also characterized by chronic inflammation that is thought to be secondary to poor-
quality nutrition, nutritional excess and other environmental factors that affect metabolic and 
inflammatory signal transduction pathways [3,145,146]. Women with PCOS also have a chronic low-
grade inflammatory state during pregnancy that has been found to be associated with a higher risk 
of adverse obstetric outcomes [147–149]. Abnormal maternal inflammation has been associated with 
altered uteroplacental development and function [150], although the precise mechanisms are largely 
unknown. 

Women with PCOS appear to have a proinflammatory state that is intrinsic to the underlying 
pathophysiology [3]. This may contribute to altered endometrial immune cell (natural killer cells, 
macrophages, T cells) and cytokine profiles (interleukin 15 and 18, chemokine ligand 10), that 
compromise normal implantation [151,152]. Women with PE have a heightened inflammatory state 
with elevated proinflammatory cytokines and chemokines, both systemically and in the placenta 
[150,153]. Studies in rodents and non-human primates have provided evidence of mechanistic links 
between maternal inflammation and PE [150,154]. Lipopolysaccharide-induced inflammation in 
pregnant rats showed that inflammation was associated with deficient trophoblast invasion and 
spiral artery remodeling [150]. In addition, inflammation increased maternal mean arterial pressure 
and was associated with structural changes in the kidney and proteinuria, as is found in PE [150]. 
Wilson et al demonstrated increased syncytiotrophoblast inflammation in a testosterone-induced 
primate model of PCOS using a novel contrast-enhanced ultrasound technique [154].  

Maternal diet during pregnancy can also influence systemic and placental inflammation and 
may provide a mechanistic link between PCOS and PE [155,156]. Diet quality has been found to 
influence insulin signaling and inflammatory pathways in rodents and humans [157]. Higher quality 
diet was shown to improve insulin signaling in the placenta using a mouse model of maternal obesity 
[157]. Francis et al examined the effect of consuming a healthy diet on a range of placental proteins 
involved in metabolic pathways and inflammation [156]. They assessed diet quality using the 
Healthy Eating Index, which is based on consumption of vegetables, fruit, dairy, protein, whole 
grains, and unsaturated fats, with lower intakes of red and processed meat, and added sugar [158]. 
They found that proteins of the p38MAPK inflammatory signaling pathway were lower in placental 
villi of pregnant women consuming a healthier diet. Placental p38MAPK is upregulated by 
proinflammatory stimuli and has been linked to placental angiogenesis and further production of 
proinflammatory cytokines [159]. Taken together, these data support the findings of observational 
studies linking healthy diets to improved pregnancy outcomes, and lower rates of PE, as previously 
discussed. 

Pathological levels of maternal inflammation may result in altered decidual and placental 
inflammatory responses that affect placental development and function [41,150,160]. Inflammatory 
processes can contribute to, and exacerbate, the effects of insulin resistance and hyperandrogenism 
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[1]. Previous reviews have discussed the role of chronic low-grade inflammation and altered immune 
function in PCOS [3] and PE [41]. 

4.3. Hyperandrogenism 

The presence of hyperandrogenism in non-pregnant women with the PCOS is associated with 
increased metabolic and cardiovascular risk [161–164]. Although not all studies report increased 
adverse pregnancy outcomes in different PCOS phenotypes [165], the majority of published reports 
demonstrate an association between hyperandrogenism and complications such as gestational 
diabetes, preterm delivery, and PE [166–168]. PCOS is associated with altered histological structure 
of the placenta, including microscopic alterations in trophoblast invasion [169,170], that may be 
increased in women with hyperandrogenism [171]. Maternal hyperandrogenism has also been found 
to be an independent predictor of PE [168].     

The relationship between androgens and maternal cardiovascular and placental function has 
been investigated in human and animal models [172]. Placental androgen receptor gene expression 
is increased and placental aromatase mRNA and protein expression are decreased, in the placenta of 
women with PE [173]. Serum testosterone levels of preeclamptic women are elevated (2-3 fold) and 
are correlated with vascular dysfunction [172]. Elevated androgens in pregnant rats are involved in 
gestational hypertension (reduced uterine arterial blood flow) [174], endothelial dysfunction 
(impaired nitric oxide-mediated relaxation in systemic and uterine vessels) [174,175], heightened 
vasoconstriction in response to angiotensin II [175], decreased spiral artery remodeling (inhibition of 
angiogenesis, reduced radial and spiral artery diameters, increased UtAPI) [176], placental hypoxia 
(increase in hypoxia-inducible factor) [176], and altered nutrient transport (reduced amino acid 
transport) [173]. All of these factors are known to be involved in the pathophysiology of PE. 

Both IR and chronic inflammation can cause and exacerbate hyperandrogenism in women with 
PCOS [1,3]. Insulin stimulates androgen production in theca cells of normal ovaries and likely 
contributes to elevated maternal testosterone levels [172,177,178]. Insulin inhibits the aromatase 
enzyme in human trophoblasts which may result in a placental contribution to maternal 
hyperandrogenemia [131]. Chronic inflammation can cause hyperandrogenism via a number of 
mechanisms including disruption of signaling pathways, alteration to epigenetic processes, and 
posttranscriptional regulatory effects [9]. Hyperandrogenism in PCOS may be due to the synergistic 
actions of IR and chronic ovarian and systemic inflammation [3,179]. The degree of 
hyperandrogenism in women with PE varies depending on the sex of the fetus, with higher levels in 
pregnancies with a male fetus [173]. Therefore, women with PE may have elevated androgen levels 
due to a combination of fetal, maternal, and placental sources.  

A detailed discussion of the effects of hyperandrogenism on maternal vascular and placental 
function and the implications for the pathogenesis of PE are beyond the scope of the present report 
and can be found in previous comprehensive reviews [172,180]. Taken together, these data strongly 
suggest that many androgen-mediated actions are important contributors to the pathophysiology of 
PE. The majority of women with PCOS have hyperandrogenemia [181] that may contribute to 
dysregulated androgen signaling in the placenta and increase the frequency of maternal-fetal 
complications associated with PE [172]. 

5. Identification, Assessment, and Management of Women with PCOS in Pregnancy 

Early identification of women at increased risk of developing PE has been advocated to help 
reduce the associated maternal and perinatal morbidity and mortality [34,53]. There has been a 
general lack of awareness of the significant association between PCOS and adverse pregnancy 
outcomes, including PE. Healthcare professionals do not usually identify women with PCOS during 
antenatal care, delivery, or post-partum [182]. This is reflected in the absence of inclusion of PCOS in 
risk assessment algorithms for PE, and lack of specific recommendations for screening, monitoring, 
and treatment of women with PCOS during pregnancy [58]. The 2023 international guidelines include 
a meta-analysis of 109 studies that explored the relationship between PCOS and adverse pregnancy 
outcomes [63]. As previously discussed, women with PCOS had a significantly increased risk of 
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developing PE on pooled analysis (OR: 2.28, 95% CI 1.88-2.77), that was even greater when only high-
quality studies were assessed (OR: 3.05, 95% CI 1.20-7.8) [52]. 

Accumulated evidence from 8 systematic reviews over the past 40 years, therefore report a 
significantly increased risk of PE in women with PCOS [52]. These data, coupled with the increasing 
availability of early pregnancy screening for PE [34], suggest that women with PCOS should be 
included in risk assessment algorithms and be considered for screening and possible treatment to 
reduce the risk of developing PE. 

Screening may include measurement of mean arterial blood pressure, ultrasound with mean 
UtAPI, and maternal serum biochemical markers (PAPP-A and/or PlGF) [54,183,184]. Several 
prospective studies have demonstrated the predictive value of  measurements of the serum sFlt-
1/PlGF ratio for diagnosis, monitoring, and management of women at high-risk of developing PE 
[34,53,185–187]. Low-dose aspirin treatment starting before 16 weeks and continued to 37 weeks, has 
been shown to significantly reduce the likelihood of preterm pre-eclampsia (62% reduction), preterm 
birth, and other associated complications [49]. Low-dose aspirin (<300mg per day) selectively 
inactivates endothelial cyclooxygenase and inhibits the biosynthesis of placental thromboxane A 
[33,188]. The mechanism by which aspirin prevents PE is unknown but may include improvements 
in placentation, inhibition of platelet aggregation, and anti-inflammatory effects [188–191]. Women 
with PCOS identified as high-risk on first trimester screening, could be offered low-dose aspirin 
prophylaxis followed by repeated angiogenic ratio measurements starting at 22 weeks gestation, as 
per established protocols (Figure 2) [53].  

Low-dose aspirin has been co-administered with a variety of other medications for ovulation 
induction in women with PCOS-related infertility. These include clomid [192], letrozole [193], 
tamoxifen [194], and Chinese medicine [195]. When considered together, these studies report 
improved oocyte quality, higher pregnancy rates, and increased endometrial thickness. It is not 
possible to determine the impact of aspirin on placentation or pregnancy outcomes from these studies 
due to the combined administration with other medications. Nevertheless, aspirin is a non-steroidal 
anti-inflammatory medication with known hemodynamic and immunomodulatory effects and may 
have beneficial effects on placentation in high-risk women when initiated in the periconception 
period. A randomized trial sought to investigate this possibility by comparing low-dose aspirin 
monotherapy with placebo [196]. Preconception aspirin resulted in a non-significant increase in live 
birthrate among a large cohort of women with a history of pregnancy loss. A secondary analysis of 
women who were adherent to low-dose aspirin for at least 4 days per week showed improved 
reproductive outcomes [197]. A further secondary analysis in women with a history of low-grade 
inflammation, assessed by elevated high-sensitivity C-reactive protein (hsCRP), found that women 
in the lowest hsCRP tertile had increased live birth rates (RR: 1.35, 95% CI 1.08-1.67). Taken together, 
these studies raise some important issues for the management of women with PCOS as most women 
with PCOS have low-grade chronic inflammation and increased risk of pregnancy-related 
complications. Future studies are required to evaluate the impact of periconception aspirin in women 
with a history of adverse pregnancy outcomes and/or PCOS. In the meantime, the beneficial effects 
of lifestyle and postconception aspirin treatment are supported by a significant body of evidence, as 
previously discussed.      

Recent studies have suggested that it may be possible to stop aspirin at 28 weeks gestation if the 
angiogenic ratio (sFlt-1:PlGF) and/or the UtAPI are normal [198,199]. Mendoza et al performed a 
multicentre, open label, randomized trial of 968 pregnant women who were at high-risk of preterm 
PE on first trimester screening (StopPRE trial) [198]. All women were commenced on aspirin 150mg 
per day before 16 weeks and 6 days gestation, followed by an sFlt-1:PlGF ratio at 24 to 28 weeks. 
Participants with a ratio less than 38 were randomized to either continue aspirin (control group) or 
discontinue aspirin treatment (intervention group). The incidence of preterm PE and delivery before 
37 weeks gestation was 1.48% (7/473) in the intervention group and 1.73% (8/463) in the control group 
(absolute difference -0.25%; 95% CI: -1.86% to 1.36%) [198]. Aspirin commenced in high-risk women 
before 16 weeks and 6 days and discontinued at 24-28 weeks, was not inferior to aspirin continued to 
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37 weeks for preventing preterm PE in women who had a normal sFlt-1:PlGF ratio at 24-28 weeks. 
There were no significant differences in any other adverse pregnancy or neonatal outcomes. 

Bonacina et al performed a post-hoc analysis of the StopPRE trial described above [199]. In the 
secondary analysis women with a UtAPI >90th percentile were excluded. A total of 836 women were 
randomized to continue (control group 416) or discontinue aspirin treatment (intervention group 
420). Preterm PE occurred in 0.7% (3/409) in the intervention group and 1.3% (5/395) of the control 
group (absolute difference -0.53; 95% CI: -1.91 to 0.85). Discontinuation of aspirin at 24-28 weeks 
gestation in women with a UtAPI index <90th percentile was non-inferior to continuing aspirin 
treatment until 36 weeks for preventing preterm PE. Women in the intervention group had 
significantly less minor bleeding complications than women in the control group [199]. These 
findings are consistent with previous cohort studies showing that low-dose aspirin use during 
pregnancy may be associated with increased postpartum bleeding and haematoma [200]. 

The authors of the secondary analysis of the StopPRE trial concluded that high-risk women 
commenced on aspirin at <16 weeks gestation who had either a sFlt-1:PlGF ratio <38 or UtAPI <90th 
percentile, could discontinue aspirin at 24-28 weeks [199]. If further large trials confirm these 
findings, ceasing aspirin at 24-28 weeks could result in increased compliance and reduced bleeding 
risk, without loss of treatment efficacy. 

 

Figure 2. Risk assessment and management of women with PCOS before and during pregnancy. 

First trimester triple test screening is based on references [54,184]. Use of aFlt-1:PIGF ratio is 
based on references [34,53]. Mean Arterial Pressure (MAP; Uterine Artery Pulsatility Index (UtAPI); 
Placental Growth Factor (PlGF); soluble fms-like tyrosine kinase-1 (sFlt-1).   

In summary, the diagnosis of PCOS can reliably be made on history at first presentation in early 
pregnancy [201,202]. Women with PCOS should be offered nutritional advice from a dietitian and 
considered for prophylactic aspirin treatment as per Fetal Medicine Foundation or local guideline 
recommendations [183,203]. Women identified as high risk on screening should be offered low-dose 
aspirin (100-150mg/day, taken at night) starting before 16 weeks of pregnancy then followed by 
repeat angiogenic ratio measurement from 22 weeks gestation (Figure 2) [53,204]. In addition, health 
practitioners involved in antenatal care should be educated about the risk of pregnancy complications 
and PE in women with PCOS. Future research should be directed at investigating the underlying 
pathophysiology that predisposes women with PCOS to an increased risk of PE. 

6. Conclusions 
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Polycystic ovary syndrome is a multisystem metabolic and endocrine disorder that is associated 
with an increased risk of pregnancy-related complications, including PE. International guidelines 
recommend lifestyle treatment, including diet and exercise, as the first line of management for all 
women with PCOS. A significant body of evidence supports the recommendations of expert advisory 
groups that healthy diet patterns reduce the risk of PE. PCOS is usually diagnosed in adolescence or 
early adulthood and presents an ideal opportunity for preventative lifestyle interventions that can be 
implemented prior to conception to reduce the risk of pregnancy complications. Women with a 
history of PCOS can also be assessed in early pregnancy and given lifestyle advice and support. In 
addition, women with PCOS can also be evaluated with first trimester triple test screening and 
advised about their eligibility for prophylactic medical therapy to reduce the risk of PE. 
Implementation of preventative intervention strategies have the potential to reduce pregnancy-
related complications and future development of transgenerational chronic disease-related morbidity 
and mortality in women with PCOS and their offspring. 
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